Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Statistically disordered short hydrogen bonds in $\left(\right.$ pipzH $\left._{2}\right)(\mathrm{cdoH})_{2}$ and a comparison with (pipzH2)(cdo). $\mathrm{H}_{2} \mathrm{O}$ (pipz is piperazine and cdoH_{2} is chelidonic acid)

Mohammad Ghadermazi, ${ }^{\text {a }}{ }^{*}$ Marilyn M. Olmstead, ${ }^{\text {b }}$ Jafar Attar Gharamaleki ${ }^{\text {c }}$ and Shahideh Rostami ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj, Iran, ${ }^{\mathbf{b}}$ Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616-5292, USA, and ${ }^{\mathrm{c}}$ Faculty of Chemistry, Tarbiat Moallem University, Tehran, Iran
Correspondence e-mail: mghadermazi@yahoo.com
Received 24 February 2011
Accepted 3 March 2011
Online 11 March 2011
Two related proton-transfer compounds, namely piperazine-1,4-diium 4-oxo-4 H -pyran-2,6-dicarboxylate monohydrate, $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}{ }^{2+} \cdot \mathrm{C}_{7} \mathrm{H}_{2} \mathrm{O}_{6}{ }^{2-} \cdot \mathrm{H}_{2} \mathrm{O}$ or (pipzH$\left.)_{2}\right)(\mathrm{cdo}) \cdot \mathrm{H}_{2} \mathrm{O}$, (I), and piperazine-1,4-diium bis(6-carboxy-4-oxo-4H-pyran-2-carboxylate), $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{3} \mathrm{O}_{6}{ }^{-}$or $\left(\mathrm{pipzH}_{2}\right)(\mathrm{cdoH})_{2}$, (II), were obtained by the reaction of 4 -oxo- 4 H -pyran-2,6-dicarboxylic acid (chelidonic acid, cdoH_{2}) and piperazine (pipz). In (I), both carboxyl H atoms of chelidonic acid have been transferred to piperazine to form the piperazine-1,4-diium ion. The structure is a monohydrate. All potential $\mathrm{N}-\mathrm{H}$ donors are involved in $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The water molecule spans two anions via the 4-oxo group of the pyranose ring and a carboxylate O atom. The hydrogen-bonding motif is essentially two-dimensional. The structure is a pseudomerohedral twin. In the asymmetric unit of (II), the anion consists of monodeprotonated chelidonic acid, while the piperazine1,4 -diium cation is located on an inversion centre. The single carboxyl H atom is disordered in two respects. Firstly, the disordered H atom is shared equally by both carboxylic acid groups. Secondly, the H atom is statistically disordered between two positions on either side of a centre of symmetry and is engaged in a very short hydrogen-bonding interaction; the relevant $\mathrm{O} \cdots \mathrm{O}$ distances are 2.4549 (11) and $2.4395(11) \AA$, and the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angles are 177 (6) and $177(5)^{\circ}$, respectively. Further hydrogen bonding of the type $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ places the $\left(\mathrm{pipzH}_{2}\right)^{2+}$ cations in pockets formed by the chains of (cdoH) ${ }^{-}$anions. In contrast with (I), the $\left(\mathrm{pipzH}_{2}\right)^{2+}$ cations form hydrogen-bonding arrays that are perpendicular to the anions, yielding a three-dimensional hydrogen-bonding motif. The structures of both (I) and (II) also feature $\pi-\pi$ stacking interactions between aromatic rings.

Comment

4-Oxo-4H-pyran-2,6-dicarboxylic acid, also called chelidonic acid, is a weak acid extracted from the perennial herb celandine (Chelidonium majus) as a white crystalline substance (m.p. 538 K). The structures of several metal complexes containing the 4 -oxo- 4 H -pyran-2,6-dicarboxylate dianion, $(\mathrm{cdo})^{2-}$, illustrate the versatile ability of this ligand to coordinate in a monodentate, bidentate or bridging fashion. Crystal structures include complexes of $\mathrm{Ag}^{+}, \mathrm{Be}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Mn}^{2+}$, $\mathrm{Cu}^{2+}, \mathrm{Cd}^{2+}, \mathrm{Sn}^{2+}, \mathrm{Zn}^{2+}$ and Tb^{3+} (Manojlovic-Muir et al., 1999; Ng et al., 2000; Olovsson et al., 2001; Fainerman-Melnikova et al., 2006; Yasodha, Govindarajan, Low \& Glidewell, 2007; Chen, 2009; Zhang et al., 2009; Zhou et al. 2009). A salt of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]$ (cdo) (Yasodha, Govindarajan, Manivannan \& Büyükgüngör, 2007) has also been reported.

As a continuation of our research on the synthesis of proton-transfer compounds by the use of different dicarboxylic acids and numerous amines [for a similar protontransfer compound of pyridine-2,6-dicarboxylic acid with piperazine, see Aghabozorg, Ghadermazi et al. (2006), and for a proton-transfer compound of piperazine with oxalate, see Aghabozorg, Ghadermazi \& Sheshmani (2006)], we report here the synthesis and structure determination of two protontransfer compounds, (I) and (II), obtained from 4 -oxo- 4 H -pyran-2,6-dicarboxylic acid $\left(\mathrm{cdoH}_{2}\right)$ and piperazine (pipz).

(I)

(II)

In $\left(\mathrm{pipzH}_{2}\right)(\mathrm{cdo}) \cdot \mathrm{H}_{2} \mathrm{O}$, (I) (Fig. 1), both H atoms of $\mathrm{cdoH} \mathrm{H}_{2}$ are transferred to pipz, and the negative charge of (cdo) ${ }^{2-}$ is balanced by the doubly protonated piperazine-1,4-diium ion. All possible $\mathrm{N}-\mathrm{H}$ donors are engaged in hydrogen bonds to O atoms (see Table 1). The water molecule spans two different anions via the 4 -oxo group of the pyranose ring (O4) and a carboxylate O atom (O 2). Atom O 2 is also hydrogen bonded to an $\mathrm{N}-\mathrm{H}$ donor. These hydrogen-bonding interactions form a motif that is two-dimensional and lies parallel to the (101) plane (Fig. 2).

In $\left(\mathrm{pipzH}_{2}\right)(\mathrm{cdoH})_{2},(\mathrm{II})\left(\right.$ Fig. 3), the H atom of the $(\mathrm{cdoH})^{-}$ anion is disordered with respect to exchange between the two

Figure 1
A view of (I), with displacement ellipsoids drawn at the 50% probability level.

Figure 2
A view of (II), with displacement ellipsoids drawn at the 50% probability level. Atoms H2 and H6 are at half-occupancy. [Symmetry code: (i) $-x+2$, $-y+2,-z-1$.]
carboxylic acid centres, as well as with respect to a centre of inversion. As shown in Fig. 4, the H -atom position is disordered between opposite sides of the centre of inversion with occupancies of 0.5 . Thus, there are two asymmetric hydrogen bonds, viz. $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 2^{\prime}$ and $\mathrm{O} 6-\mathrm{H} 6 \cdots 6^{\prime \prime}$ (see Fig. 4 for symmetry codes). The $\mathrm{O} \cdots \mathrm{O}$ distances and linear geometry correspond to very short hydrogen bonds (Table 2). On average, each (cdoH) ${ }^{-}$anion acts as an acceptor, using either O 2 or O6, and as a donor, using either H 2 or H6. A similar but apparently symmetrically hydrogen-bonded species was reported in the structure of $\left[\mathrm{Zn}(\text { phen })_{3}\right]_{4}\left[\mathrm{H}(\mathrm{Hpydc})_{2}\right]$ $\left(\mathrm{NO}_{3}\right)_{7} \cdot 26 \mathrm{H}_{2} \mathrm{O}$ (phen is 1,10 -phenanthroline and Hpydc is 6-carboxypyridine-2-carboxylate; Moghimi et al., 2005). In this case, the unique H atom resides on a centre of symmetry, bridging two carboxylates, and leads to the formation of a discrete anion with an $\mathrm{O} \cdots \mathrm{O}$ distance of 2.493 (3) \AA. In (II),

Figure 3
A view, approximately down the a axis, of the packing of (I). Hydrogenbonding interactions are shown as dashed lines.

Figure 4
A portion of the structure of (II), depicting the short hydrogen bonds between carboxyl groups of the $(\mathrm{cdoH})^{-}$group. Atoms H2 and H6 are at half-occupancy and are disordered with respect to centres of symmetry [Symmetry codes: $\left(^{\prime}\right)-x+2,-y+2,-z ;\left({ }^{\prime \prime}\right)-x+1,-y+1,-z+1$.]
each of the $\mathrm{N}-\mathrm{H}$ donor groups is hydrogen bonded to a different $\mathrm{C}=\mathrm{O}$ group of the anion (see Table 2 for details). The $\mathrm{N} \cdots \mathrm{N}$ vector of the $\left(\mathrm{pipzH}_{2}\right)^{2+}$ cation is perpendicular to the chain of anions, yielding a three-dimensional hydrogenbonding motif (Fig. 5), different from the orientation in (I) where the $\mathrm{N} \cdots \mathrm{N}$ vector is in the plane of the anions.

There are several other notable differences between the two structures. Although both (I) and (II) feature alternating inversion-related $\pi-\pi$ stacking interactions, these differ in their details, as viewed from top to bottom in Fig. 6. If the stacking planes are represented by the six-membered C1-C5/ O1 ring, in (I), the perpendicular distances between stacking planes alternate between 3.2856 (5) and 3.4334 (5) A, with slippage distances of 2.46 and $2.18 \AA$, and centroid-centroid distances between 4.1071 (7) and 4.0644 (7) \AA, respectively. In

Figure 5
A view, approximately down the a axis, of the packing of (II). $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions are shown as dashed lines.

Figure 6
Stacking of the aromatic anions, showing the alternation of inversionrelated $\pi-\pi$ interactions. [Symmetry codes, for (I): (') $-x,-y+1,-z$; (') $-x+1,-y+1,-z$; for (II): (') $-x+1,-y+1,-z ;\left(^{\prime \prime}\right)-x+2,-y+1,-z$.]
(II), the corresponding values are 3.2771 (3) and 3.3451 (3) \AA for perpendicular distances, 1.35 and $2.04 \AA$ for slippage
distances, and 3.5449 (4) and 3.9201 (4) \AA for centroidcentroid distances.

The carbonyl bond lengths support the existence of deprotonated acid molecules. In particular, the $\mathrm{C}-\mathrm{O}$ distances indicate full delocalization in (I) and are equal within the s.u. values. In (II), the $\mathrm{C}-\mathrm{O}$ bonds bearing the H atoms is $c a 0.05 \AA$ longer than the $\mathrm{C}=\mathrm{O}$ bonds (see Tables 3 and 4).

The 4-oxo group of the furan ring is expected to be a strong hydrogen-bond acceptor, but is only engaged in a classical hydrogen bond to water in the structure of (I). In the structure of (II), there are no remaining donors for this purpose and it remains only weakly involved in $\mathrm{C}-\mathrm{H}$ interactions.

Experimental

For the preparation of compound (I), 4-oxo-4 H -pyran-2,6-dicarboxylic acid ($2.02 \mathrm{~g}, 10 \mathrm{mmol}$; Acros, chelidonic acid) was dissolved in methanol (200 ml) by heating. To this solution was added a solution of piperazine ($0.86 \mathrm{ml}, 10 \mathrm{mmol}$) in methanol (10 ml). After cooling, a light-yellow precipitate was collected. The precipitate was redissolved in water and allowed to evaporate slowly, producing crystals suitable for X-ray diffraction [m.p. 467 K (decomposition)]. Elemental analysis calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{12}$: C 47.54, H 3.96, N 6.16%; found: C 47.09, H 3.91, N 6.08\%. IR (KBr, $v, \mathrm{~cm}^{-1}$): $1339(s), 1397(s), 1644$ (s), 2446 (br), 2999 (br), 3075 (w), 3236 (s), 3424 (s), 3620 (s); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$): $\delta 3.439\left(3 \mathrm{H}, \mathrm{pipH}_{2}\right), 6.939(2 \mathrm{H}, \mathrm{cdo}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right)$: $\delta 184.5,159.1,115.8,40.2 ;$ UV: 223 nm .

Compound (II) was obtained when we attempted to synthesize a nickel(II) complex with (cdo) $)^{2-}$. To a solution of (I) ($1 \mathrm{mmol}, 0.27 \mathrm{~g}$) in water was added a solution of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.14 \mathrm{~g}, 0.5 \mathrm{mmol})$ (molar ratio of 2:1) in water (25 ml). After one week, a light-yellow precipitate was collected. This was redissolved in water and allowed to evaporate slowly, yielding the crystals used for data collection [m.p. 489 K (decomposition)]. IR ($\mathrm{KBr}, \nu, \mathrm{cm}^{-1}$): 1338 (br), 1383 (s), 1459 (w), 1642 (br), 2489 (br), 3075 (w), 3238 (w), 3622 (br).

Compound (I)

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}{ }^{2+} \cdot \mathrm{C}_{7} \mathrm{H}_{2} \mathrm{O}_{6}{ }^{2-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=288.26$
Monoclinic, $P 2_{\mathrm{a}_{1}} / n$
$a=6.8003$ (3) A
$b=11.3961$ (5) \AA
$c=16.1548$ (7) \AA
$\beta=92.968(2)^{\circ}$

Data collection

Bruker SMART APEX DUO diffractometer
Absorption correction: multi-scan (TWINABS; Sheldrick, 2006)
$T_{\text {min }}=0.948, T_{\text {max }}=0.993$

$$
V=1250.27(9) \AA^{3}
$$

$Z=4$
Mo $K \alpha$ radiation
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=87 \mathrm{~K}$
$0.42 \times 0.14 \times 0.06 \mathrm{~mm}$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.099$
$S=1.12$
4609 reflections
189 parameters
3 restraints

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.52 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.24 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 4$	$0.87(2)$	$1.94(2)$	$2.8049(14)$	$172(2)$
$\mathrm{O} 7-\mathrm{H} 7 B \cdots \mathrm{O}^{\mathrm{i}}$	$0.89(2)$	$2.27(2)$	$3.0533(16)$	$147(2)$
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\text {ii }}$	0.92	1.88	$2.7796(12)$	166
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{OS}^{\text {iii }}$	0.92	1.80	$2.7126(12)$	170
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 2$	0.92	1.77	$2.6815(12)$	171
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 6$	0.92	1.84	$2.7519(13)$	168
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.92	2.56	$3.1115(13)$	119
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 1$	0.92	2.49	$2.9436(12)$	110
Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2} ;$; (ii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2} ;$ (iii) $-x+\frac{1}{2}, y-\frac{1}{2}$,				
$-z+\frac{1}{2}$.				

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 2 \cdots \mathrm{O}^{2}$	$0.93(4)$	$1.52(4)$	$2.4549(11)$	$177(6)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{H} 6 \cdots \mathrm{O}^{6 i}$	$0.91(4)$	$1.53(4)$	$2.4395(11)$	$177(5)$
N1-H1A $\cdots \mathrm{O}^{\text {iii }}$	0.92	1.94	$2.8032(8)$	156
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{O}^{\text {iii }}$	0.92	2.09	$2.8419(8)$	138

Symmetry codes: (i) $-x+2,-y+2,-z$; (ii) $-x+1,-y+1,-z+1$; (iii) $x, y+1$, $z-1$.

Compound (II)

Crystal data

$\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{7} \mathrm{H}_{3} \mathrm{O}_{6}{ }^{-}$
$M_{r}=454.34$
Triclinic, $P \overline{1}$
$a=6.7880$ (3) A
$b=8.0650$ (4) \AA
$c=8.5675$ (4) A
$\alpha=90.377(2)^{\circ}$
$\beta=94.110(2)^{\circ}$

Data collection

Bruker SMART APEXII

diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.956, T_{\text {max }}=0.976$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.092$
$S=1.06$
2971 reflections
153 parameters
$\gamma=104.538(3)^{\circ}$
$V=452.70$ (4) \AA^{3}
$Z=1$
Mo $K \alpha$ radiation
$\mu=0.14 \mathrm{~mm}^{-1}$
$T=87 \mathrm{~K}$
$0.36 \times 0.34 \times 0.22 \mathrm{~mm}$

7496 measured reflections 2971 independent reflections 2806 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.011$

For (I), the crystal was a three-component rotational twin. Twin integration was carried out using SAINT (Bruker, 2010) and the absorption correction was applied using TWINABS (Sheldrick, 2006). The final reflection file used all components and composites. The excess 447 reflections were discounted in the least-squares instruction in order not to underestimate the s.u. values. In addition, 33 reflections were specifically omitted that were likely affected by overlap of twin domains. The twin laws were as follows: transforms $h 1.1(1) \rightarrow h 1.2(2)(-0.999940 .000890 .00046 /-0.00252-1.00000$ $-0.00009 / 0.24863-0.000030 .99994$); transforms $h 1.1(1) \rightarrow h 1.3(3)$ $(-1.00020-0.00071-0.04193 / 0.00208-1.00000-0.00066 / 0.00948$ -0.00126 1.00020); transforms $h 1.2(2) \rightarrow h 1.3(3)(0.989720 .00160$

Table 3
Selected bond lengths (Å) for (I).

O2-C7	$1.2575(13)$	O5-C6	$1.2518(13)$
O3-C7	$1.2518(13)$	O6-C6	$1.2520(14)$
O4-C3	$1.2417(14)$		

Table 4
Selected bond lengths (\AA) for (II).

O2-C7	$1.2794(9)$	O5-C6	$1.2303(9)$
O3-C7	$1.2330(9)$	O6-C6	$1.2850(9)$
O4-C3	$1.2373(8)$		

$-0.04239 /-0.004740 .99999-0.00057 / 0.239190 .001441 .00015)$. Refined twin parameters for the three components are: 0.6036 (10)/ 0.2707 (10)/0.1257 (11).

For both (I) and (II), H atoms bonded to C and N atoms were refined as riding, with $\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$ and $\mathrm{N}-\mathrm{H}=0.92 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. For (I), the H atoms of the hydrate molecule were located in a difference map and subsequently refined with restraints of $\mathrm{O}-\mathrm{H}=0.84$ (2) \AA and $\mathrm{H} \cdots \mathrm{H}=1.34$ (4) \AA, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. In the structure of (II), there are two short hydrogen bonds between the protonated carboxyl groups and the unprotonated carboxylate groups of an inversion-related (cdoH) ${ }^{-}$ anion. Electron-density maps show that these are asymmetric hydrogen bonds and the H atom does not reside on the centre of symmetry. Each of these H atoms (H2 and H6) is at half-occupancy for charge balance and in order to model the disorder. These two H atoms were freely refined.

For both compounds, data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: $X P$ in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors acknowledge the University of Kurdistan, Sanandaj, Iran, for support, the University of California, Davis, for the purchase of the APEXII diffractometer and the National Science Foundation for the purchase of the APEX DUO diffractometer.

[^0]
References

Aghabozorg, H., Ghadermazi, M., Manteghi, F. \& Nakhjavan, B. (2006). Z. Anorg. Allg. Chem. 632, 2058-2064.
Aghabozorg, H., Ghadermazi, M. \& Sheshmani, S. (2006). Acta Cryst. E62, o3287-o3289.
Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, J. C. (2009). Z. Kristallogr. New Cryst. Struct. 224, 29-30.
Fainerman-Melnikova, M., Clegg, J. K. \& Codd, R. (2006). Acta Cryst. E62, m3582-m3584.
Manojlovic-Muir, L., Muir, K. W., Campbell, R. A., McKendrick, J. E. \& Robins, D. J. (1999). Acta Cryst. C55, 178-180.
Moghimi, A., Sheshmani, S., Shokrollahi, A., Shamsipur, M., Kickelbick, G. \& Aghabozorg, H. (2005). Z. Anorg. Allg. Chem. 631, 160-169.

organic compounds

Ng, S. W., Shanmuga Sundara Raj, S., Fun, H.-K., Razak, I. A. \& Hook, J. M. (2000). Acta Cryst. C56, 966-968.

Olovsson, I., Ptasiewicz-Bak, H., Gustafsson, T. \& Majerz, I. (2001). Acta Cryst. B57, 311-316.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2006). TWINABS. Program for absorption correction. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Yasodha, V., Govindarajan, S., Low, J. N. \& Glidewell, C. (2007). Acta Cryst. C63, m207-m215.
Yasodha, V., Govindarajan, S., Manivannan, V. \& Büyükgüngör, O. (2007). Acta Cryst. E63, m2720.
Zhang, Z.-J., Shi, W., Huang, Y.-Q., Zhao, B., Cheng, P., Liao, D.-Z. \& Yan, S.-P. (2009). CrystEngComm, 11, 1811-1814.

Zhou, X.-X., Liu, M.-S., Lin, X.-M., Fang, H.-C., Chen, J.-Q., Yang, D.-Q. \& Cai, Y.-P. (2009). Inorg. Chim. Acta, 362, 1441-1447.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK3402). Services for accessing these data are described at the back of the journal.

